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Abstract
If two parties, Alice and Bob, share some number,n, of partially entangled
pairs of qubits, then it is possible for them to concentrate these pairs into some
smaller number of maximally entangled states. We present a simplified version
of the algorithm for suchentanglement concentration, and we describe efficient
networks for implementing these operations.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

The state of a single pure quantum bit, orqubit, is described by a vector in a two-dimensional
Hilbert space spanned by basis vectors|0〉 and|1〉. The state ofn pure qubits (i.e. ann-qubit
register) is described by a vector in a 2n-dimensional Hilbert space which is the tensor product
of the two-dimensional spaces for the states of each of then qubits. Consider a two-qubit
register in a state described by the vector|�〉 = 1√

2
|00〉+ 1√

2
|11〉. We call a pair of particles in

this state an EPR pair, named after Einstein, Podolsky and Rosen, who discussed such particle
pairs in their 1935 paper [3]. It can easily be shown that this vector cannot be factored into a
tensor product of two one-qubit states. That is,

|�〉 = 1√
2

|00〉 +
1√
2

|11〉 �= (a0 |0〉 + a1 |1〉) ⊗ (b0 |0〉 + b1 |1〉)
for anya0, a1, b0, b1. The amount of entanglement present in a bipartite quantum system
can be quantified, and for this purpose we will treat a single EPR pair as possessing one unit
of entanglement.

In many scenarios involving quantum communication, an essential ingredient is the
sharing of an EPR pair by Alice (the ‘sender’ of some information) and Bob (the ‘receiver’).
For example, when Alice and Bob share an EPR pair, they are able to perform quantum
teleportation, a process useful for communicating quantum information. Using protocols
involving the sharing of EPR pairs, some distributed computation tasks can be achieved using
fewer bits than could be achieved using only a classical channel (see e.g. [2] and [4]).
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Suppose Alice and Bob share a known entangled pair of qubits

|�〉 = α00|0〉|0〉 + α01|0〉|1〉 + α10|1〉|0〉 + α11|1〉|1〉
where the first qubit is in Alice’s possession and the second qubit in Bob’s. The Schmidt
decomposition for this bipartite system allows us to express the state of this pair of qubits as

|�〉 = α|a0〉|b0〉 + β|a1〉|b1〉
for some non-zero positive real numbersα andβ, and unit vectors|a0〉 and|a1〉 that form a
basis for Alice’s system, and unit vectors|b0〉 and |b1〉 that form a basis for Bob’s system.
Since Alice and Bob can each locally perform the one-qubit unitary operations

|a0〉 → |0〉, |a1〉 → |1〉
and

|b0〉 → |0〉, |b1〉 → |1〉
respectively, we will assume that Alice and Bob share an entangled state of the form

α|00〉 + β|11〉.
If |α| = |β| = 1√

2
, then the state is an EPR state, and is said to bemaximally entangled.

If |α| �= |β| then the state is less entangled, and if either|α| or |β| equal 0, then the state is
completely non-entangled.

Consider a 2n-qubit system of the form|�〉 = (α|00〉 + β|11〉)n, shared by two parties,
Alice and Bob, where|α| �= |β|. Now suppose Alice and Bob want to share some maximally
entangled EPR pairs for some communication task. A natural question is: how many EPR
pairs can Alice and Bob distill out of|�〉, performing local operations and communicating
classically? An upper bound on the expected number of EPR pairs that can be distilled
is the ‘entropy of entanglement’ of|�〉 defined to be the von Neumann entropy of either
ρA = TrB |�〉〈�| or ρB = TrA|�〉〈�|. These quantities are both equal to the Shannon
entropy of the eigenvalues of(|�〉〈�|)n (which are the squares of Schmidt coefficients of
the state|�〉n). This quantity equalsn times the von Neumann entropy of|�〉〈�|, namely
nH(|α2|), whereH(p) = p log2(

1
p
) + (1 − p) log2(

1
1−p

). For example, the von Neumann

entropy of an EPR pair isH(|( 1√
2
)2|) = 1.

The process of distilling EPR pairs out of|�〉 is calledentanglement concentration. Local
operations for performing entanglement concentration have been by Bennettet al in [1]. The
expected amount of concentrated entropy of entanglement is

n−1∑
j=1

|α2|n−j (1 − |α2|)j
(

n

j

)
log2

(
n

j

)
(1)

and they show that this quantity is innH(|α2|) − O(logn).
In section 2 we describe the approach detailed in [1]. We then describe a new way of

extracting a specific number of EPR pairs instead of the method suggested in [1]. In section 3
we will give a description of a quantum network for performing the main local basis change
necessary for performing entanglement concentration. In section 4 we summarize how to
implement entanglement concentration.
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2. Local operations for entanglement concentration

Consider concentrating the entanglement of the state|�〉 defined above, and without loss of
generality assume thatα, β are positive real numbers. Consider the case forn = 3 qubits:

(α|00〉 + β|11〉)3 = α3| alice
0

bob
0 〉| alice

0
bob
0 〉| alice

0
bob
0 〉

+α2β (|00〉|00〉|11〉 + |00〉|11〉|00〉 + |11〉|00〉|00〉)
+αβ2 (|00〉|11〉|11〉 + |11〉|00〉|11〉 + |11〉|11〉|00〉)
+β3|11〉|11〉|11〉.

Separating Alice’s qubits from Bob’s, we can rewrite the above state as

α3
alice

|000〉
bob

|000〉 +α2β (|001〉|001〉 + |010〉|010〉 + |100〉|100〉)
+αβ2 (|011〉|011〉 + |101〉|101〉 + |100〉|100〉) + β3|111〉|111〉.

In general, if we haven copies ofα|00〉 + β|11〉, by appropriately reordering the qubits
we get

αn| a

0〉| b

0〉 + αn−1β


 ∑

H(x)=1

a

|x〉
b

|x〉

 + αn−2β2


 ∑

H(x)=2

a

|x〉
b

|x〉

 + · · ·

+αβn−1


 ∑

H(x)=n−1

a

|x〉
b

|x〉

 + βn

a

|1〉
b

|1〉

=
n∑

j=0

αn−j βj


 ∑

H(x)=j

a

|x〉
b

|x〉



where Alice’s qubits are labelled with an ‘a’ and Bob’s are labelled with a ‘b’, and H(x)

is the number of 1s in the stringx, also known as the Hamming weight ofx. On the
right-hand side of the equality, the state is written in terms of the symmetric basis. The
symmetric space is an (n + 1)-dimensional subspace of the 2n-dimensional state-space for the
register. Theith symmetric basis state is a uniform superposition of the computational basis
states having Hamming weighti. Alice and Bob can each measure the Hamming weight
of their half of the state|�〉n. The measurement is implemented by introducing an ancilla
of sizeO(logn). A sequence of controlled-[add 1] operations is used to add the Hamming
weight of each qubit of|�〉 into the ancilla. This is implemented by the network shown in
figure 1.

Suppose Alice measures the Hamming weight of|�〉 and obtains the result|j 〉 (Bob
will measure the samej whenever he performs the same measurement.) This state after the
measurement is

1√(
n
j

) ∑
H(x)=j

a

|x〉
b

|x〉

which can be thought of as a superposition of
(
n
j

)
n-bit strings. (Of course, the measurement

is not necessary, and the remainder of the algorithm could be controlled quantumly upon
the valuej .) Let r = [log2

(
n
j

)
]. Define a functionf on these

(
n
j

)
strings that maps the

(
n
j

)
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x1〉

n

H(x1 ...xn)

xn

 
 

+1 
 

 
 

+1 
 

 
 

+1 
 

 
 

+1 
 



x2〉

x3〉

x 〉

0 〉
0 〉

0 〉

x1〉

x2〉

x3〉

〉

〉

Figure 1. Network to compute the Hamming weight.|x1 · · · xn〉|00· · · 0〉 → |x1 · · · xn〉|
H(x1 · · · xn)〉.

strings of lengthn with Hamming weightj (in lexicographic order) to the integers from 0
to

(
n
j

) − 1:

f (00. . .00 11. . .1︸ ︷︷ ︸
j

) = 00. . .0

f (00. . .10 11. . .1︸ ︷︷ ︸
j−1

) = 00. . .1

...

f (11. . .1︸ ︷︷ ︸
j

00. . .0) =
(

n

j

)
− 1 = m

= 00. . .0︸ ︷︷ ︸
n−r

m︸︷︷︸
r

.

We can extendf so that it defines a permutation ofall n-bit strings. Then we have

1√(
n
j

) ∑
H(x)=j

|x〉|x〉 f→ 1√(
n
j

) ∑
H(x)=j

|f (x)〉|f (x)〉 = 1√(
n
j

)
(

n
j

)
−1∑

y=0

|0〉︸︷︷︸
n−r

| y〉︸︷︷︸
r

|0〉| y〉.

If
(
n
j

) = 2r , then ignoring the firstn − r bits on both sides and dropping the normalization
constant gives us

2r−1∑
y=0

| y〉| y〉

which isr EPR pairs, and the entanglement of|�〉 has been concentrated.
However, in general,

(
n
j

)
will not be a power of 2. Letk = [log2

(
n
j

)
] + 1. We describe

a quantum network that will produce some number 0� l � k − 1 of EPR pairs (we
use this definition fork in place of the previous definition forr for convenience in describing
a network that will behave the same whether or not

(
n
j

)
is a power of 2). The expected number
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of EPR pairs will be at leastk − 2. We illustrate this forn = 3 entangled pairs of qubits.
Consider the binary representation

(
n
j

) = x2x1x0 = x2 · 22 + x1 · 21 + x0 · 20. We have

(
n
j

)
−1∑

y=0

| y〉| y〉 =
x2·22−1∑

y=0

| y〉| y〉 +
x2·22+x1·21−1∑

y=x2·22

| y〉| y〉 +
x2·22+x1·21+x0·20−1∑

y=x2·22+x1·21

| y〉| y〉. (2)

Notice that ifx2 = 1 then the above sum includes 000� y � 011. These are included in∑x2·22−1
y=0 | y〉| y〉 which is the first term on the right-hand side of (2) (ifx2 = 0, then this term

is empty). Similarly, ifx1 = 1 the sum includesx200 � y � x201 and ifx0 = 1 it includes
x2x10 � y � x2x10. So we can write the sum (2) as follows:

(
n
j

)
−1∑

y=0

| y〉| y〉 = x2

011∑
y=000

| y〉| y〉 + x1

x201∑
y=x200

| y〉| y〉 + x0

x2x10∑
y=x2x10

| y〉| y〉. (3)

In other words, for eachj such thatxj = 1, we have the superposition of 2j strings. Alice
and Bob wish to project to one of these superpositions of 2j strings, since that will provide
them withj EPR pairs.

The first term on the right-hand side of (3) contains the strings 000, 001, 010, 011; all
the strings beginning with a 0. Suppose Alice performs a measurement of the qubit in the

leftmost position (i.e. corresponding toy2) of her share of the state
∑(n

j)−1

y=0 | y〉| y〉 (Bob will
obtain the same result whenever he performs the analogous measurement on his share). In
addition, Alice also has the corresponding bitx2 in a register containing the binary expansion
of

(
n
j

)
. There are three cases to consider:

Case 1. y2 = 0 andx2 = 1.
In this case the joint state after the measurement is

011∑
y=000

| y〉| y〉

which is the first term on the right-hand side of (3). Ignoring|y2〉, this is two EPR pairs.

Case 2. y2 = 0 andx2 = 0.
The state after the measurement is

x1

001∑
y=000

| y〉| y〉 + x0

0x10∑
y=0x10

| y〉| y〉.

Ignoring the leftmost qubit|y2〉 this is equal to

x1

01∑
y=00

| y〉| y〉 + x0

x10∑
y=x10

| y〉| y〉.

Case 3. y2 = 1.
In this case we knowx2 = 1. So the post-measurement state is

x1

101∑
y=100

| y〉| y〉 + x0

1x10∑
y=1x10

| y〉| y〉.
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Ignoring the leftmost qubit|y2〉 this is equal to

x1

01∑
y=00

| y〉| y〉 + x0

x10∑
y=x10

| y〉| y〉.

If Alice’s measurement results in case 1, then the entanglement has been concentrated,
and she makes no further measurements. Cases 2 and 3 both leave Alice and Bob with the
statex1

∑01
y=00 | y〉| y〉+x0

∑x10
y=x10 | y〉| y〉. In either of these cases, Alice discards the leftmost

qubit |y2〉. She then repeats the measurement procedure, where this time the leftmost bits
being measured arey1 andx1. The analogous three cases are considered again.

This time case 1 would result in the post-measurement state
∑01

y=00 | y〉| y〉. Ignoring the
leftmost qubity1, this gives one EPR pair, and the procedure stops. Cases 2 and 3 both result
in the post measurement statex0

∑0
y=0 | y〉| y〉, giving no EPR pairs.

It is easy to generalize this approach fork = [log2
(
n
j

)
] + 1. Alice (or Bob) measures

(locally) the qubitsyk−1, . . . , y1, from ‘left-to-right’, at each step checking the value of the
corresponding bitxi in the binary expansion of

(
n
j

)
. She does this until, at some iterationl

(where the first iteration is indexed 0), she finds|yk−1−l〉 = |0〉 and the corresponding bit
xk−1−l = 1. When this occurs the procedure stops, having distilledk − l − 1 EPR pairs.

A quantum network implementing the procedure is shown in figure 2. Since the Hamming
weightj has been measured,

(
n
j

)
can be efficiently computed. The binary representation of

(
n
j

)
is encoded in a register|xk−1 . . . x0〉. The network makes use of an ancilla of sizek, initially
in the state|1〉k. We refer to this ancilla as the ‘control ancilla’, and label its qubits by|ti〉 for
0 � i � k − 1. For eachi, |ti〉 is switched to|0〉 if both |yi〉 = |0〉 and|xi〉 = |1〉. This is
achieved using a sequence of doubly controlled NOT gates in the first stage of the network,
where the NOT is applied to the target qubit if the first control qubit is in state|1〉 and the
second control qubit is in state|0〉. Another ancilla of sizeO(log(k − 1)), which we will call
the ‘measurement ancilla’, is initially in the state|k − 1〉. In the second stage of the network,
the value of the measurement ancilla is decremented by a sequence of controlled-[subtract 1]
gates, controlled successively on each of the|ti〉 in the control ancilla. The net effect of the
first two stages of the network is to decrement the measurement ancilla by one for each pair
(|xi〉, |yi〉) until one such pair is found with(|xi〉 = |1〉, |yi〉 = |0〉). After such a pair is
encountered, the measurement ancilla is not decremented any more. In order to reverse the
effect of any coupling that the network may have introduced between the primary register| y〉
and the ancilla|t〉, the same sequence of doubly controlled NOT gates that was used in the
first stage of the network is applied again in the third stage.

The control ancilla has been reset to its initial state by the third stage of the network,
and the register|x〉 containing the binary expansion of

(
n
j

)
is in a fixed computational basis

state, since the value ofj was fixed by the Hamming weight measurement performed earlier.
Ignoring the state of the control ancilla and the register|x〉, the joint state of Alice’s system
| y〉 and the measurement ancilla just before the final measurement is

xk−1

01k−1∑
y=0k

| y〉|k − 1〉 + xk−2

xk−101k−2∑
y=xk−10k−1

| y〉|k − 2〉 + · · · + x0

y=xk−1···x10∑
y=xk−1···x10

| y〉|0〉.

The string xk−1xk−2 . . . xk−l corresponds to the the leftmostl bits in the binary
representation of

(
n
j

)
. After the measurement of the control ancilla in the computational

basis, the state is
xk−1xk−2...xk−l01k−l−1∑
y=xk−1xk−2...xk−l0k−l

| y〉|k − l − 1〉
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yk-1

yk-2

y1

y0

k-1

1

1

xk-1

xk-2

x1

x0

 
 
 

-1 

 
 
 

-1

 
 
 

-1

1

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

〉

1〉

〉

Figure 2. Network to measure how many EPR pairs have been distilled.

for some 0� l � k − 1. Ignoring the leftmostl + 1 qubits, this is

1k−l−1∑
y=0k−l−1

| y〉|k − l − 1〉.

Each ignoring their respective leftmostl + 1 qubits, the joint Alice–Bob state is

1k−l−1∑
y=0k−l−1

| y〉| y〉

which isk − l − 1 EPR pairs. Note that the state of Alice’s ancilla (and Bob’s, if he performs
the same measurement procedure on his share of the state) indicates the number of EPR pairs
that have been distilled.

It should be noted that Alice and Bob can each carry out the above procedure locally, and
they will obtain the same results. Alternatively, Alice could perform the Hamming weight
computation locally and send the result to Bob. Alice and Bob would both perform the
permutationf by the method detailed in section 3). In the last stage of the procedure, either
Alice or Bob could perform the computation to determine the number of EPR pairs that have
been distilled, and send the result to the other.
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It can be shown that given the superposition(
n
j

)
−1∑

y=0

| y〉| y〉

the average number of EPR pairs produced using this approach is
k−1∑
i=1

ixi
2i(
n
j

) � k − 2.

3. Implementing the permutation f

The key step in the entanglement concentration protocol is the permutationf . We need to
know how to implement this function. Recall that we start with a superposition of

(
n
j

)
strings

x, each havingj 1s andn − j 0s. We wantf to impose a lexicographic ordering on these
strings.

Consider the following:

00. . .0
f −1

→ 00. . .00 11. . .1︸ ︷︷ ︸
j

00. . .1
f −1

→ 00. . .10 11. . .1︸ ︷︷ ︸
j−1

...(
n − 1

j

)
− 1

f −1

→ 0 11. . .1︸ ︷︷ ︸
j

00. . .0

(
n − 1

j

)
f −1

→ 10. . .0 11. . .1︸ ︷︷ ︸
j−1

...(
n

j

)
− 1

f −1

→ 11. . .1︸ ︷︷ ︸
j

00. . .0.

The first
(
n−1
j

)
strings have a 0 in the first bit position, and the remaining strings have a

1 in the first bit position. Define [y]n,j to be theyth largest string (treating the string as an
integer represented in binary) of lengthn with Hamming weightj . Using this notation, the
method for implementingf is captured by the following recurrence:

[ y]n,j = 0[ y]n−1,j if 0 � y <

(
n − 1

j

)
(4)

= 1

[
y −

(
n − 1

j

)]
n−1,j−1

if

(
n − 1

j

)
� y <

(
n

j

)
.

We describe how the permutationf −1 can be implemented on a quantum computer. Let
[ y]n,j = b1b2 . . . bn. Then start with a string between 00. . .0 and

(
n
j

)−1, and ancilla holding

the valuesn, j , and a space for the output stringsf −1(y):

| y〉|n〉|j 〉|00. . .0〉.
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Apply an operatorT which performs the following mapping:

| y〉|n〉|j 〉|00. . .0〉 T→ | y〉|n〉|j 〉|00. . . 0〉 if 0 � y <

(
n − 1

j

)

T→ | y〉|n〉|j 〉|10. . . 0〉 if

(
n − 1

j

)
� y <

(
n

j

)
.

The result is

| y〉|n〉|j 〉|00. . .0〉 T→ | y〉|n〉|j 〉|b10 . . .0〉
for someb1 ∈ {0, 1}. Then perform the following subtraction operationS, controlled
quantumly on the value ofb1:

| y〉|n〉|j 〉 S→ | y〉|n − 1〉|j 〉 if b1 = 0

S→
∣∣∣∣y −

(
n − 1

j

)〉
|n − 1〉|j − 1〉 if b1 = 1.

Then repeatT and S, this time on only the rightmostn − 1 bits of the registers|y〉 and
|b10 . . . 0〉. Applying T andS in this way, a total ofn times, realizes the recurrence (4), and
gives us an implementation off −1:

| y〉 f −1

→ |[ y]n,j 〉
and thus the same network maps(

n
j

)
−1∑

y=0

| y〉 f −1

→
∑

H(x)=j

|x〉.

The permutationf is realized simply by running this procedure backwards.

4. An algorithm for entanglement concentration

We now have the tools to state an algorithm for implementing the entanglement concentration
protocol described in section 4.1. The algorithm is the following:

(1) Begin with the state|�〉 = (α|00〉 + β|11〉)n.
(2) Alice and Bob each perform a Hamming-weight measurement on their half of|�〉,

obtaining the same result|j 〉.
(3) Alice and Bob each perform the permutationf on the resulting superposition.
(4) Alice and Bob each use the network of figure 2 to determine how many EPR pairs they

share.
(5) The result is some known number of perfect EPR pairs. For a particularj , the expected

number is betweenk − 2 andk − 1 wherek = [log2
(
n
j

)
] + 1.

Each of the above steps has been detailed in the preceding sections, and so we have a complete
description of the implementation. Since the probability of measuring|j 〉 in step 2 is

|α2|n−j (1 − |α2|)j
(

n

j

)

the expected number of EPR pairs is at least
n∑

j=0

|α2|n−j (1 − |α2|)j
(

n

j

) (⌊
log2

(
n

j

)⌋
− 1

)
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and comparing to equation (1) shows that we get at least

nH(|α2|) − O(logn)

EPR pairs on average. Note that the theoretical maximum isnH(|α2|).
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